- $1.65-\mathrm{V}$ to $5.5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ Operation

- Useful for Both Analog and Digital Applications
- Specified Break-Before-Make Switching
- Rail-to-Rail Signal Handling
- High Degree of Linearity
- High Speed, Typically 0.5 ns ($\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)

DBV PACKAGE (TOP VIEW)

DCK PACKAGE
(TOP VIEW)

- Low On-State Resistance, Typically $\approx 6 \Omega$ ($\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$)
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101)

See mechanical drawings for dimensions.

description/ordering information

This single-pole, double-throw (SPDT) analog switch is designed for $1.65-\mathrm{V}$ to $5.5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation.
The SN74LVC1G3157 can handle both analog and digital signals. The device permits signals with amplitudes of up to V_{CC} (peak) to be transmitted in either direction.
Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.

ORDERING INFORMATION

T_{A}	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING \ddagger
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	NanoStarTM - WCSP (DSBGA) $0.23-\mathrm{mm}$ Large Bump - YEP	Tape and reel	SN74LVC1G3157YEPR	-_-C5_
	NanoFree ${ }^{\text {TM }}$ - WCSP (DSBGA) 0.23 -mm Large Bump - YZP (Pb-free)		SN74LVC1G3157YZPR	
	SOT (SOT-23) - DBV	Tape and reel	SN74LVC1G3157DBVR	CC5
	SOT (SC-70) - DCK	Tape and reel	SN74LVC1G3157DCKR	
	SOT (SOT-553) - DRL	Reel of 4000	SN74LVC1G3157DRLR	S

† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.
\ddagger DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.
YEP/YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition ($1=\mathrm{SnPb}, \bullet=\mathrm{Pb}$-free).

FUNCTION TABLE
CONTROL INPUT S
L CHANNEL
L
H

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\text { Supply voltage range, } \mathrm{V}_{\mathrm{CC}} \text { (see Note 1) } 0.5 \mathrm{~V} \text { to } 6.5 \mathrm{~V}
$$

Control input voltage range, V_{IN} (see Notes 1 and 2) ... 0.5 V to 6.5 V

On-state switch current, $\mathrm{I}_{/ / \mathrm{O}}\left(\mathrm{V}_{\mathrm{I} / \mathrm{O}}=0\right.$ to $\left.\mathrm{V}_{\mathrm{CC}}\right)$ (see Note 5) .. $\pm 128 \mathrm{~mA}$

Package thermal impedance, θ_{JA} (see Note 6): DBV package $165^{\circ} \mathrm{C} / \mathrm{W}$
DCK package $259^{\circ} \mathrm{C} / \mathrm{W}$
DRL package $142^{\circ} \mathrm{C} / \mathrm{W}$
YEP/YZP package 123² C / W
Storage temperature range, $T_{\text {stg }}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltages are with respect to ground unless otherwise specified.
2. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
3. This value is limited to 5.5 V maximum.
4. $\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{O}}, \mathrm{V}_{\mathrm{A}}$, and V_{Bn} are used to denote specific conditions for $\mathrm{V}_{\mathrm{I} / \mathrm{O}}$.
5. II, $\mathrm{I}_{\mathrm{O}}, \mathrm{I}_{\mathrm{A}}$, and I_{Bn} are used to denote specific conditions for $\mathrm{I}_{\mathrm{I}} / \mathrm{O}$.
6. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 7)

			MIN	MAX	UNIT
			1.65	5.5	V
$\mathrm{V}_{\mathrm{I} / \mathrm{O}}$			0	V_{CC}	V
$\mathrm{V}_{\text {IN }}$			0	5.5	V
V_{IH}	High-level input voltage, control input	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	0.75		V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 5.5 V	$\times 0.7$		
$\mathrm{V}_{\text {IL }}$	Low-level input voltage, control input	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	$\mathrm{V}_{\mathrm{CC}} \times 0.25$		V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 5.5 V		$\times 0.3$	
$\Delta t / \Delta v$	Input transition rise/fall time	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V		20	ns / V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		20	
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V		10	
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		10	
$\mathrm{T}_{\text {A }}$			-40	85	${ }^{\circ} \mathrm{C}$

NOTE 7: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SINGLE-POLE, DOUBLE-THROW ANALOG SWITCH

SCES424E - JANUARY 2003 - REVISED JUNE 2005
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS			Vcc	MIN	TYP†	MAX	UNIT			
r_{0}	On-state switch resistance \ddagger		See Figures 1 and 2	$\mathrm{V}_{1}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA}$	1.65 V		11	20	Ω			
			$\mathrm{V}_{1}=1.65 \mathrm{~V}$	$\mathrm{I}=-4 \mathrm{~mA}$			15	50					
			$\mathrm{V}_{1}=0 \mathrm{~V}$	$\mathrm{O}=8 \mathrm{~mA}$	2.3 V		8	12					
			$\mathrm{V}_{1}=2.3 \mathrm{~V}$	$\mathrm{O}=-8 \mathrm{~mA}$			11	30					
			$\mathrm{V}_{1}=0 \mathrm{~V}$	$\mathrm{I}=24 \mathrm{~mA}$	3 V		7	9					
			$\mathrm{V}_{1}=3 \mathrm{~V}$	$\mathrm{I}=-24 \mathrm{~mA}$			9	20					
			$\mathrm{V}_{1}=0 \mathrm{~V}$	$\mathrm{I} \mathrm{O}=30 \mathrm{~mA}$	4.5 V		6	7					
			$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$	$\mathrm{I}=-30 \mathrm{~mA}$			7	12					
			$\mathrm{V}_{\mathrm{I}}=4.5 \mathrm{~V}$	$\mathrm{I} \mathrm{O}=-30 \mathrm{~mA}$			7	15					
${ }^{\text {r }}$ range	On-state switch resistance over signal range $\ddagger \S$			$0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$ (see Figures 1 and 2)		$\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}$	1.65 V			140	Ω		
			$\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}$			2.3 V			45				
			$\mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}$			3 V			18				
			$\mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}$			4.5 V			10				
$\Delta r_{\text {on }}$	Difference of on-state resistance between switches \ddagger			See Figure 1	$\mathrm{V}_{\mathrm{Bn}}=1.15 \mathrm{~V}$	$\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}$	1.65 V		0.5		Ω		
			$\mathrm{V}_{\mathrm{Bn}}=1.6 \mathrm{~V}$		$\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}$	2.3 V		0.1					
			$\mathrm{V}_{\mathrm{Bn}}=2.1 \mathrm{~V}$		$\mathrm{I}^{\prime}=-24 \mathrm{~mA}$	3 V		0.1					
			$\mathrm{V}_{\mathrm{Bn}}=3.15 \mathrm{~V}$		$\mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}$	4.5 V		0.1					
$r^{\text {on(flat) }}$	ON resistance flatness \ddagger ¢\|					$0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$		$\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}$	1.65 V		110		Ω
			$\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}$			2.3 V		26					
			$\mathrm{I}^{\prime}=-24 \mathrm{~mA}$			3 V		9					
			$\mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}$			4.5 V		4					
$1 \mathrm{off}^{\text {2 }}$	Off-state switch leakage current			$0 \leq \mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, (see Figure 3)			$\begin{gathered} 1.65 \mathrm{~V} \\ \text { to } 5.5 \mathrm{~V} \end{gathered}$			± 1	$\mu \mathrm{A}$		
							± 0.05	$\pm 1 \dagger$					
IS(on)	On-state switch leakage current			$\begin{aligned} & V_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{O}}=\text { Open (see Figure 4) } \end{aligned}$				5.5 V			± 1	$\mu \mathrm{A}$	
									$\pm 0.1 \dagger$				
In	Control input current			$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$			$\begin{aligned} & 0 \mathrm{~V} \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$			± 1	$\mu \mathrm{A}$		
							± 0.05	$\pm 1 \dagger$					
ICC	Supply current			$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND				5.5 V		1	10	$\mu \mathrm{A}$	
${ }^{\text {II CC }}$	Supply-current change			$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}-0.6 \mathrm{~V}$			5.5 V		500		$\mu \mathrm{A}$		
$\mathrm{Cin}_{\text {in }}$	Control input capacitance	S				5 V		2.7		pF			
C_{io} (off)	Switch input/output capacitance	Bn				5 V		5.2		pF			
$\mathrm{C}_{\mathrm{io} \text { (on) }}$	Switch input/output capacitance	Bn				5 V		17.3		pF			
		A					17.3						

[^0]analog switch characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	$\begin{gathered} \hline \text { FROM } \\ \text { (INPUT) } \end{gathered}$	TO (OUTPUT)	TEST CONDITIONS	V_{CC}	TYP	UNIT
Frequency response (switch on) ${ }^{\dagger}$	A or Bn	Bn or A	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}_{\mathrm{in}}=\text { sine wave } \\ & \text { (see Figure } 6 \text {) } \end{aligned}$	1.65 V	300	MHz
				2.3 V	300	
				3 V	300	
				4.5 V	300	
Crosstalk (between switches) \ddagger	B1 or B2	B2 or B1	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{f}_{\mathrm{in}}=10 \mathrm{MHz} \text { (sine wave) } \\ & \text { (see Figure 7) } \end{aligned}$	1.65 V	-54	dB
				2.3 V	-54	
				3 V	-54	
				4.5 V	-54	
Feed-through attenuation (switch off) \ddagger	A or Bn	Bn or A	$\begin{aligned} & C_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}_{\text {in }}=10 \mathrm{MHz} \text { (sine wave) } \\ & \text { (see Figure 8) } \end{aligned}$	1.65 V	-57	dB
				2.3 V	-57	
				3 V	-57	
				4.5 V	-57	
Charge injection§	S	A	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \\ & \text { (see Figure 9) } \end{aligned}$	3.3 V	3	pC
				5 V	7	
Total harmonic distortion	A or Bn	Bn or A	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V} \text { p-p, } \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{f}_{\mathrm{in}}=600 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ & \text { (sine wave) } \\ & \text { (see Figure 10) } \end{aligned}$	1.65 V	0.1	\%
				2.3 V	0.025	
				3 V	0.015	
				4.5 V	0.01	

\dagger Adjust $f_{\text {in }}$ voltage to obtain 0 dBm at output. Increase $f_{\text {in }}$ frequency until dB meter reads -3 dB .
\ddagger Adjust $f_{\text {in }}$ voltage to obtain 0 dBm at input.
§ Specified by design
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 5 and 11)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} \\ \pm 0.15 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ \pm 0.5 \mathrm{~V} \end{gathered}$		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$t_{\text {pd }}{ }^{\text {I }}$	A or Bn	Bn or A		2		1.2		0.8		0.3	ns
ten ${ }^{\text {\# }}$	S	Bn	7	24	3.5	14	2.5	7.6	1.7	5.7	ns
$\mathrm{t}_{\text {dis }}{ }^{\text {I }}$			3	13	2	7.5	1.5	5.3	0.8	3.8	
t_{B} - ${ }^{\text {d }}$			0.5		0.5		0.5		0.5		ns

$\mathbb{I}_{\mathrm{t}_{\text {pd }}}$ is the slower of tPLH or tPHL . The propagation delay is calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impedance).
\# ten is the slower of tpZL or tpZH.
$\|_{t_{\text {dis }}}$ is the slower of tpLZ or tPHZ.
*Specified by design

PARAMETER MEASUREMENT INFORMATION

Figure 1. On-State Resistance Test Circuit

Figure 2. Typical $r_{\text {on }}$ as a Function of Input Voltage $\left(V_{I}\right)$ for $V_{I}=0$ to $V_{C C}$

PARAMETER MEASUREMENT INFORMATION

Condition 1: $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}, \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{C}}$
Condition 2: $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{C}}, \mathrm{V}_{\mathrm{O}}=\mathrm{GND}$
Figure 3. Off-State Switch Leakage-Current Test Circuit

Figure 4. On-State Switch Leakage-Current Test Circuit

PARAMETER MEASUREMENT INFORMATION

V_{CC}	INPUTS		V_{M}	$\mathrm{V}_{\mathrm{LOAD}}$	C_{L}	R_{L}	V_{Δ}
	$\mathrm{V}_{\mathbf{I}}$	$\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$					
$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2 \mathrm{~ns}$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$2 \times \mathrm{V}_{\mathrm{CC}}$	50 pF	500Ω	0.3 V
$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2 \mathrm{~ns}$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$2 \times \mathrm{V}_{\mathrm{CC}}$	50 pF	500Ω	0.3 V
$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2.5 \mathrm{~ns}$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$2 \times \mathrm{V}_{\mathrm{CC}}$	50 pF	500Ω	0.3 V
$5 \mathrm{~V} \pm 0.5 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2.5 \mathrm{~ns}$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$2 \times \mathrm{V}_{\mathrm{CC}}$	50 pF	500Ω	0.3 V

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

> VOLTAGE WAVEFORMS
> ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING
A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
D. The outputs are measured one at a time, with one transition per measurement.
E. $t P L Z$ and $t P H Z$ are the same as $t_{\text {dis }}$.
F. $t_{P Z L}$ and $t_{P Z H}$ are the same as ten.
G. $t_{P L H}$ and $t_{P H L}$ are the same as $t_{p d}$.
H. All parameters and waveforms are not applicable to all devices.

Figure 5. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

Figure 6. Frequency Response (Switch On)

Figure 7. Crosstalk (Between Switches)

PARAMETER MEASUREMENT INFORMATION

Figure 8. Feed Through

Figure 9. Charge-Injection Test

PARAMETER MEASUREMENT INFORMATION

Figure 10. Total Harmonic Distortion

Figure 11. Break-Before-Make Internal Timing

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
74LVC1G3157DBVRE4	ACTIVE	SOT-23	DBV	6	3000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
74LVC1G3157DCKRE4	ACTIVE	SC70	DCK	6	3000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
74LVC1G3157DCKRG4	ACTIVE	SC70	DCK	6	3000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
74LVC1G3157DRLRG4	ACTIVE	SOP	DRL	6	4000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC1G3157DBVR	ACTIVE	SOT-23	DBV	6	3000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC1G3157DCKR	ACTIVE	SC70	DCK	6	3000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC1G3157DGVR	PREVIEW	SOT-23	DBV	6		TBD	Call TI	Call TI
SN74LVC1G3157DRLR	ACTIVE	SOP	DRL	6	4000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC1G3157YEPR	ACTIVE	WCSP	YEP	6	3000	TBD	SNPB	Level-1-260C-UNLIM
SN74LVC1G3157YZPR	ACTIVE	WCSP	YZP	6	3000	Pb-Free (RoHS)	SNAGCU	Level-1-260C-UNLIM

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of $\mathrm{Bromine}(\mathrm{Br}$) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DBV (R-PDSO-G6)
PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
D. Leads $1,2,3$ may be wider than leads $4,5,6$ for package orientation.

Falls within JEDEC MO-178 Variation $A B$, except minimum lead width.

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion.
D. Falls within JEDEC MO-203

DRL (R-PDSO-N6)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. JEDEC package registration is pending.

YZP (R-XBGA-N6)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. NanoFree ${ }^{\text {TM }}$ package configuration.
D. This package is lead-free. Refer to the 6 YEP package (drawing 4204725) for tin-lead (SnPb).

YEP (R-XBGA-N6)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. NanoStar ${ }^{T M}$ package configuration.
D. This package is tin-lead (SnPb). Refer to the 6 YZP package (drawing 4204741) for lead-free.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

[^0]: $\dagger_{\mathrm{A}}=25^{\circ} \mathrm{C}$
 \ddagger Measured by the voltage drop between I/O pins at the indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (A or B) ports.
 § Specified by design
 II $\Delta r_{o n}=r_{o n(\max)}-r_{o n(\min)}$ measured at identical $V_{C C}$, temperature, and voltage levels.
 \# This parameter is characterized, but not tested in production.
 $\|$ Flatness is defined as the difference between the maximum and minimum values of ON resistance over the specified range of conditions.
 ${ }^{*} l_{\text {off }}$ is the same as I_{S} (off) (off-state switch leakage current).

